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Abstract. Floe size distribution (FSD) has become a parameter of great interest in observations of sea ice because of its

importance in affecting climate change, marine ecosystems, and human activities in the polar ocean. The sizes of ice floes

can range from less than a square metre to hundreds of square kilometres, so the most effective way to monitor FSD in the

ice-covered regions is to apply image processing techniques to airborne and satellite remote sensing data. The segmentation

of individual ice floes is crucial for obtaining FSD from remotely sensed images, and it is a challenge to separate floes that5

appear to be connected. Although deep learning (DL) networks have achieved great success in image processing, they still

have limitations in this application. A key reason is the lack of sufficient labelled data, which is costly and time-consuming to

produce. In order to alleviate this issue, we use classical image processing techniques to achieve a manual-label free ice floe

image annotation, which is further used to train DL models for fast and adaptive individual ice floe segmentation, especially

for separating visibly connected floes. A post-processing algorithm is also proposed in our work to refine the segmentation.10

Our approach has been applied to both airborne and high-resolution optical (HRO) satellite images, and successfully derived

FSD at local and global scales.

1 Introduction

Determining the characteristics of sea ice is critical to the understanding of physical processes in the polar regions and climate

change globally (Notz and SIMIP Community, 2020). Although sea ice concentration (SIC) and sea ice thickness (SIT) are15

widely used parameters, the size and shape distributions of individual pieces of sea ice, floes, are also important for determining

the SIC (Nose et al., 2020), processes including sea ice melt (Horvat and Tziperman, 2018), propagation of ocean waves in the

ice pack (Squire et al., 1995), development and maintenance of the upper ocean mixed layer (Manucharyan and Thompson,

2017), and also play an important role in human activities, such as maritime navigation and offshore operations in ice-covered

regions (Marchenko, 2012; Mironov, 2012). Image data from various sources are rich in environmental information, and from20

which many floe parameters can be extracted to determine a floe size distribution (FSD) (Rothrock and Thorndike, 1984). The

extraction of individual ice floes is crucial for determining FSD and other floe characteristics from images, and the separation

of connected floes has always been a challenge. The existing methods for extracting individual ice floes and estimating FSD

1

https://doi.org/10.5194/egusphere-2023-295
Preprint. Discussion started: 3 March 2023
c© Author(s) 2023. CC BY 4.0 License.



from images are mainly based on classical image processing methods. A simple approach is to define an ice-water segmen-

tation threshold to extract floes and then apply manual edge corrections when the threshold performs poorly (Toyota et al.,25

2006, 2011, 2016). Watershed transform has been adopted to detach connected floes, but excessive over-segmentation is an

ineluctable problem when using this method (Blunt et al., 2012; Zhang et al., 2013). Morphological operations can be used with

different improvements to determine individual ice floes, but the methods operate directly on binarized floe images and thus

cannot separate out the floes that had no or few gaps with any surrounding floes after binarization (Banfield, 1991; Banfield

and Raftery, 1992; Soh et al., 1998; Steer et al., 2008; Wang et al., 2016). The gradient vector flow (GVF) snake was used30

by (Zhang and Skjetne, 2015) for detecting weak floe boundaries and has achieved excellent results in segmenting individual

floes from MIZ images, in which a large amount of floes of similar shapes and sizes are connected to each other. However,

this method is not time-effective and may not work well with floe images other than MIZ images, especially the larger scale

images such as satellite imagery (Zhang, 2020; Zhang and Skjetne, 2018). These classical image processing based methods

suffered from segmentation problems, and are more or less limited by the need for manual intervention in processing individual35

images. Due to the vast volumes of image data now being collected by Earth Observation programmes such as Copernicus,

manual intervention is undesirable due to its inefficiency. Autonomous, trustworthy, and time-efficient methods thus need to

be developed.

Deep learning (DL) methods have nowadays proven to deliver superior accuracy in a wide range of image processing

applications. Pixel-based DL methods are able to map complex features at the pixel level from an image in an automated40

process, and they have also been applied in extracting all ice pixels from images consisting of a mixture of sea ice and water

(Khaleghian et al., 2021; Gonçalves and Lynch, 2021; Zhang et al., 2021). However, most of these studies grouped the pixels

belonging to different ice regions or floes into the same class (i.e. the class of ice), and did not contribute to the identification

of individual ice floes, which is an instance segmentation problem that requires multiple ice floes to be treated as distinct

individual instances. Only few studies have employed DL methods to identify individual ice floes. A semantic segmentation45

model, ResUNet, was used in (Nagi et al., 2021) to segment individual floes that were far apart from each other, and then

used ConvCRF to refine the segmentation results. This method, however, simply divided an image into two classes of ice

and background, and was unable to separate connected floes. (Cai et al., accepted) has adopted and compared two state-of-art

(SoA) DL instance segmentation models, Mask R-CNN (He et al., 2017) and YOLACT (Bolya et al., 2019), for identifying

individual model floes in an indoor ice tank. Because these models rely heavily on their own object detectors to produce50

instance segmentation results, neither model could fully detect every floe appeared in the image, resulting in the loss of floes,

and the segmentation accuracy was usually not high.

Training a DL model requires a sufficiently annotated dataset. However, data labelling usually involves a lot of manual

work and is expensive and time-consuming, which limits the application of DL methods to extracting individual ice floes (Jing

and Tian, 2021; Zhou, 2017; Chai et al., 2020). In order to minimise the manual labelling effort required from the domain55

experts, we use classical image processing method to enable a manual-label free annotation of the dataset and automatically

generate pseudo ground truth. We then apply DL semantic segmentation method, which assigns every pixel in an image to

defined classes, to address floe instance segmentation problem, and propose a post-processing algorithm to refine the model
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outputs. The application of our approach to derive FSDs from local-scale airborne imagery and global-scale satellite imagery

demonstrates the effectiveness of our approach.60

2 Dataset

2.1 Local-scale Airborne data

The local-scale image data are marginal ice zone (MIZ) images mainly from the Oden Arctic Technology Research Cruise

2015 (OATRC’15) expedition. OATRC’15 was conducted by the Norwegian University of Science and Technology (NTNU) in

collaboration with the Swedish Polar Research Secretariat (SPRS) in September 2015 (Lubbad et al., 2018). Two icebreakers,65

Oden and Frej, were employed during this research cruise into the Arctic Ocean north of Svalbard. Among many research

activities, a helicopter flight mission was accomplished when Oden was transiting in the MIZ during which an optical camera

was mounted on the helicopter, as seen in Fig. 1. This enabled the acquisition of a large number of very high resolution images

of sea ice. The resolution of the collected MIZ image depends on helicopter’s flight altitude, and was estimated as 0.22 m on

average. The specifications of the camera can be found in Table 1 (Zhang and Skjetne, 2018).70

Table 1. Visible spectrum camera specifications.

Lens type Fujion 35mm

Focal length 28.5 mm

Dimensions 5568 × 3132

Sampling frequency 0.1 Hz

In addition to the MIZ images from OATRC’15, we also used another three airborne images obtained from the remote

sensing UAV (unmanned aerial vehicle) mission over the MIZ performed by the Northern Research Institute (NORUT) at

Ny-Ålesund, Svalbard (78◦55′N 11◦56′E), in early May, 2011. The details of this UAV mission and the specifications of the

collected image data can be found in (Zhang et al., 2012).

2.2 Global-scale Satellite data75

The global-scale high-resolution optical (HRO) satellite imagery data are the freely-available data from the Sentinel-2 mission

of the European Copernicus programme. The two Sentinel-2 satellites carry a multispectral instrument (MSI) that provides

images consisting of 13 spectral bands: four bands at 10 m resolution covering visible and near-infrared (VNIR) frequencies,

six at 20 m covering red edge and short-wave infrared (SWIR), and three at 60 m for atmospheric correction (Drusch et al.,

2012). Fig. 2 displays the locations of the four Sentinel-2 Level-1 images that were acquired over the Belgica Bank area80

offshore of north-east Greenland during May and June 2021, and in this article we refer to them as S2-1, S2-2, S2-3, and

S2-4. Table 2 lists and identifies the filenames used (S2n). More details for each S2 image can be found by searching for their

filenames on the Copernicus Open Access Hub (Cop).
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(a) Helicopter camera.

Svalbard

(b) Helicopter’s flying route, starting from red and gradually changing into green. Source: (Lubbad et al., 2018).

Figure 1. Helicopter flight mission. (a) Helicopter showing location of the camera system; (b) Flight route.

Table 2. Sentinel-2 image data.

Item Product ID

S2-1 S2A_MSIL1C_20210527T144921_N0300_R082_T28XEN_20210527T165730

S2-2 S2B_MSIL1C_20210528T150759_N0300_R025_T29XMJ_20210528T171359

S2-3 S2A_MSIL1C_20210617T141951_N0300_R096_T28XEL_20210617T162322

S2-4 S2B_MSIL1C_20210620T133729_N0300_R067_T29XNG_20210620T154321
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Figure 2. Location map of the four Sentinel-2 image data.

3 Methodology

3.1 Data preparation85

By studying various floe images, we find that the intensities of the boundary pixels between two adjacent floes are usually

significant higher than those of water pixels, and close to ice pixel intensities. If we consider only two classes in floe segmenta-

tion, i.e., ice floe and water, and categorize floe boundary pixels into the class of water, the gap between the two classes will be

narrow, and the boundary pixels between two adjacent floes will most likely be classified as ice pixels, with the result that the

adjacent floes connect to each other. Therefore, we add an additional class of floe boundary, turning the two-class segmentation90

task into three-class segmentation problem. In this way, the discriminative ability of the network for segmenting individual ice

floes will be improved, not only by broadening the gap between the classes of ice and water but also through the learning of

shape and spatial relationships between ice floes and their boundaries.

We also notice that the number of pixels belonging to floe boundary class might be relatively small, comparing with those

belonging to the other two classes. Floe boundary is a hard-to-train class with pixel intensities similar to those of ice floe. It is95

necessary to increase the proportion of floe boundary in the training dataset to balance classes. MIZ images often contain large

numbers of small ice floes crowded together, and the proportions of floe boundary pixels in the MIZ images are usually higher

5

https://doi.org/10.5194/egusphere-2023-295
Preprint. Discussion started: 3 March 2023
c© Author(s) 2023. CC BY 4.0 License.



than that of other floe images. Using MIZ images as training dataset is therefore beneficial to reduce the risk of class imbalance

in the dataset. Due to this reason, we use MIZ images and their annotations to train DL models for floe instance segmentation.

3.1.1 Manual-free data annotation100

Manually labeling ice floes in MIZ images is a heavy workload. Efforts are needed to achieve automatic labelling. Because the

GVF snake-based method has a superior ability of segmenting large number of small and crowded floes in MIZ images, it is

thus utilised as an “annotation tool” to help automatically label individual ice floes in MIZ images. This method first uses the

distance map and regional maxima of the binarised MIZ image to automatically locate the initial contours, each of which is a

starting set of snake points for the evolutions. Then the GVF snake is run on each initial contour to find floe boundaries. Finally,105

superimposing all the detected boundaries over the binarised MIZ image, the connected floes are separated and individual floes

are determined (Zhang, 2020; Zhang and Skjetne, 2018).

The output of the GVF snake-based method is a binary image with two classes: ice floe and water, as seen in Fig. 3(b).

Additional floe boundary class is added by tracing the contours of each segmented ice floes. To enhance floe boundaries and

mitigate the imbalance of classes that may still be latent in the training dataset, we widen floe boundaries from one pixel to110

two pixels in the labels. And with the help of the double thick boundary labels, the network would be able to capture floe

boundaries more accurately.

GVF snake-
based method

(a) Ice floe image (b) Floe segmentation (c) 3-class label annotation

Floe boundary
labelling

Figure 3. Ice floe image annotation. (a) A small MIZ image sample; (b) Floe segmentation of (a) by the GVF-snake based method; (c)

3-class label annotation, produced by adding an additional floe boundary class to (b). Labels: white – ice floe; red – floe boundaries; black –

water. Note, the labels annotated by the GVF snake-based method are not always accurate, as seen the highlighted yellow regions in (b) and

(c) for instance. Our approach can thus be thought of as self-supervised and weakly-supervised learning that the model will learn from the

inaccurate labels created from the data itself without human annotation.

3.1.2 Multi-scale division

Our MIZ images are of different sizes. Although the fully convolutional network (FCN) architectures (Long et al., 2015) can

be designed for variable-size inputs (Long et al., 2015), in order to reduce memory usage and improve training efficiency, it115

is more practical to fix the input size of a network to a small value during the training process. Therefore, each of the images,

together with the corresponding annotation, is divided into several equal-sized patches that are as close as possible to the fixed

input size of the network for training.
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Due to the nature of the MIZ in this example, most floes in our image data have similar sizes and shapes. But in more

general cases, floe sizes and shapes can vary greatly in an image. Small floes are typically more challenging to segment, not120

only because of low resolution and small size, but also due to the lack of representation of small objects in training data

(Kisantal et al., 2019). To overcome this issue, we select a few floe images and divide each of these images (and also their

annotations) randomly into, taking Fig. 4 as an example, 1×1, 1×2, 2×3, 3×4, 4×5 sub-images. Note that some sub-images

(e.g, 4× 5 sub-images in Fig. 4) may duplicate with the patches. These duplicate sub-images should be removed so that the

remaining sub-images, which we refer them as “multi-scale sub-images”, and patches appear only once in the dataset, thus125

preventing data leakage during the training. After automatically removing the sub-images that are duplicated with the patches

by, e.g., using a naming convention to overwrite the duplicated ones, the resulted multi-scale sub-images together with the

patches constitute our dataset, and they will further be rescaled into the small size required by the network for training. In this

way, an ice floe can be resized into several smaller ones of different scales. This will increase the diversity of floe size/shape

and the appearance rate of small floes in our training dataset, and thereby helping the network improve the segmentation of130

small floes.

Multi-

scale

division

Patch division

1×1 (full size) 2×3 sub-images 3×4 sub-images1×2 sub-images

Patches

w

h

(a)

(b) w

h

4×5 sub-images

Figure 4. Patch and multi-scale divisions. An ice floe image is divided into (a) equal-sized patches with sizes close to network’s fixed input

size for training, and (b) 1× 1, 1× 2, 2× 3, 3× 4, 4× 5, · · · sub-images, and the sub-images that duplicate with the patches are removed

(we refer to the remaining sub-images as multi-scale sub-images).
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3.2 Deep learning model

In this research, we use DL semantic segmentation to solve floe instance segmentation problem. We have conducted experi-

ments on training and testing several popular semantic segmentation models on our dataset. By evaluating their performance,

we find U-Net++ with the depth of 5 (Zhou et al., 2018) gives the best results, details can be found in Section 5.1.135

U-Net++ is an encoder-decoder U-shape symmetric architectures with additional skip connections (Ronneberger et al.,

2015). The encoder part encodes the input image into feature maps at multiple different levels, while the decoder part restores

the spatial resolution of the feature maps. The encoder and decoder are connected through a series of nested dense convolutional

blocks on the skip pathways. U-Net++ also has deep supervision that allows us to use only a single loss layer to determine the

optimal depth of the network (Zhou et al., 2018).140

3.3 Post-processing

Inevitably, a few connected floes may still not be separated and some pixels inside a segmented floe may also be misclassified

as edge or water by the DL model, as seen in Fig. 6(b). A post-processing is thus necessary to refine the segmentation made by

DL models.

To find potential connected floes/regions, we first calculate the solidities of each segmented floe/region, given by:145

Solidity(f) =
Area[Filled(f)]

Area[ConvexHull(f)]
(1)

where f is a segmented ice floe/region, Filled(f) is the region of f with all the holes filled in, ConvexHull(f) is the smallest

convex polygon that encloses the region of f , and Area[·] denotes the area (number of pixels) of the region. The solidity of

any segmented floe/region is the ratio of its hole-filled area to its convex hull’s area, it reflects the convexity of each segmented

floe/region.150

An under-segmented region normally has low convexity. That means, a segmented region with low solidity (i.e., the solidity

is less than a cut-off threshold Ts) and large area (i.e., the area is lager than a threshold Ta) is more likely to be composed of

connected ice floes. Therefore, we perform the morphological opening (which removes small protrusions and breaks the ten-

uous connections between objects) to those potential under-segmented regions to detach the floes that are possibly connected.

After that, we perform the morphological closing (which fills long thin channels in the interior or at the boundaries of the155

object) and hole filling to large-area ice floes (i.e., the floes whose area is lager than a threshold T
′
a), one by one, in order of

increasing size.

The procedure of our post-processing algorithm is illustrated in Fig. 5, and Fig. 6 presents the post-processing result of an

ice floe image segmentation. Note, a small amount of pixels may be turned to other classes after post-processing. In particular,

some isolated ice pixels or tiny floes may vanish during the opening or closing process. To avoid the loss of ice pixels and the160

underestimation of SIC, the vanished ice pixels are recorded and labelled as boundary pixels in our post-processing algorithm.
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(a) Prediction of ice floes

(b) Potential under-
segmented floes

(e) Final post-processing result

(d) Large-area floes

Calculte soli-
dity of each 
segmented floe

Morphological
opening

Yes

Solidity < Ts 
& area > Ta ? 

No (c) Under-segmented 
floe separation

Yes

No
Morphological
closing & 
hole filling

Floe area
 > Ta' ? 

Figure 5. Post-processing procedure. (a) Preliminary floe segmentation made by U-Net++; (b) Potential under-segmented ice floes (high-

lighted in white), obtained by finding the floes whose solidities are lower than a cut-off threshold Ts (which is 0.85 in our case) and areas

are larger than a threshold Ta; (c) Floe segmentation after performing morphological opening on the floes found in (b), the under-segmented

floes are detached; (d) Finding out the floes in (c) whose areas are larger than a threshold T
′
a (highlighted in white); (e) Final post-processing

result by performing morphological closing and hole filling to the ice floes in (d) one by one in order of increasing size. The segmented

floes/regions in (a), (c), and (d) are labelled in different colours. Note that, only ice floes, without any floe boundaries, are presented in this

figure.

4 Implementation

4.1 Training

Our MIZ images were fed into the GVF snake-based method to “label” individual ice floes and floe boundaries. The entire

image processing was fully automatic, using the default parameters in the GVF snake-based method (Zhang, 2018) without165

any manual tuning. This means that our approach can be thought of as a self-supervised learning, with the supervisory labels

being created from the data itself without human annotation (Jing and Tian, 2021).

The processed image pairs, i.e. MIZ images and their annotations, were then divided into the patches with the sizes close

to the fixed input size of the network for training, which was 256×256 pixels in our case, a restriction of the amount of MIZ

images and GPU memory. The patch pairs that had severely wrong annotations were removed from the patch dataset. We170

also chose a few well processed image pairs and divided each of them into several multi-scale sub-images, which were the
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(a) A small subset of S2-1 image. (b) Preliminary segmentation of (a) by

U-Net++.

(c) Post-processing of (b).

Figure 6. Post-processing. (a) A small subset of S2-1 image; (b) Preliminary segmentation of (a) by U-Net++, some floes are still touching,

and some pixel insides a floe are misclassified as edge pixels; (c) Final segmentation after performing post-processing to (b). The detected

individual ice floes are labelled in different colours, and the detected floe edges are plot in dark red.

sub-images that did not duplicate with the patches. These patches (333 pairs) and multi-scale sub-images (46 pairs), a total of

379 pairs of images and the corresponding annotations, constituted the final dataset we needed for training a model. And the

proportions of each class in the dataset are 41.63% ice floe, 39.83% floe boundaries and 18.54% water.

After randomly splitting the dataset into training (290 pairs), validation (52 pairs), and test (37 pairs) sets, the training and175

validation dataset were further resized to match the training input size of the network. To increase the amount of training data,

data augmentation, including Gaussian blur, rotate, shift, flip, zoom, etc. was also employed in the training. The procedure of

our training process is illustrated in Fig. 7.

It should be noted that, because of the incorrect segmentation made by the GVF snake-based method, some errors, i.e.

some labelled ice floes are under- or over-segmented (e.g., the highligted yellow regions in Fig. 3), existed in our dataset, and180

these errors would reduce the robustness of the trained model. However, we kept the minor erroneous segmentations in our

training dataset, leaving the issue to be further overcome by the DL network. Therefore, our approach can also be thought

of as weakly-supervised learning that the model will learn from the inaccurate labels (Zhou, 2017). But for evaluating and

comparing different DL models, we have manually corrected the errors in our test dataset.

The training was performed on an NVIDIA Tesla P100-PCIE GPU with 12 GB of memory, using TensorFlow 2.4.0. Adam185

optimizer was applied in the training with a batch size of 4. The learning rate was set to 10−4 for the first 50 epochs and then

to 10−5 for the next 30 epochs. Note that the proportion of floe boundaries in our dataset is close to that of ice floes, while the

proportion of water is a bit smaller than that of the other two classes. The smaller proportion of water has little effect on the

model learning to classify water pixels, since water is an easy-to-train class with significantly lower pixel intensities than the
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Figure 7. Training procedure. Labels in the annotation: white – ice floe; red – floe boundaries; black – water.

other two classes. Therefore, there is no need to modify the loss function and categorical cross-entropy was chosen as the loss190

in the training.

4.2 Inference

Due to the limitation of computer performance, an overall large-scale image was first divided into several small tiles. Each

tile was then fed to the trained model to obtain its predicted mask. Thereafter, all the predicted masks were stitched together

to restore the spatial pattern, resulting in the preliminary floe instance segmentation. After post-processing the preliminary195

segmentation, we obtained the final floe instance segmentation. Fig. 8 illustrates the workflow of the inference using the S2-1

image as an example.

5 Experimental results and discussions

5.1 DL model evaluation

5.1.1 Evaluation metrics200

To assess DL model performance, we use accuracy, F1-score (Goutte and Gaussier, 2005), and mean intersection of union

mIoU (Long et al., 2015) as evaluation metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

F1-score =
2TP

2TP + FP + FN
(3)205
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Figure 8. Inference procedure of floe instance segmentation for a large-scale image.

mIoU =
1
C

∑

c

IoUc =
1
C

∑

c

TPc

TPc + FPc + FNc
(4)

where TP , TN , FP , and FN are pixel-wise true positive, true negative, false positive, and false negative respectively, C is

the number of classes, and IoUc is the intersection of union for class c.

With deep supervision, we observed that U-Net++ with the depth of 5 achieved the best floe instance segmentation. We have210

also conducted experiments to compare the performance of U-Net++ with other SoA semantic segmentation architectures:

the family of FCNs (i.e., FCN-8s, FCN-16s, FCN-32s) (Long et al., 2015), SegNet (Badrinarayanan et al., 2017), U-Net

(Ronneberger et al., 2015), residual U-Net (ResUNet) (Zhang et al., 2018), and residual U-Net++ (ResUNet++) (Jha et al.,

2019), where the optimal depths of U-Net, ResUNet, and ResUNet++ are 5, 5, and 6, respectively. Table 3 lists the evaluation

and comparison results based on our test dataset. We can see that the performance indicators of U-Net, ResUNet, U-Net++215
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and ResUNet++ are similar to each other and are significantly higher than those of FCN family models and SegNet, while the

U-Net++ model gives a slight advantage with the highest scores on our test dataset.

Table 3. Model performance indicators.

Methods Accuracy (%) F1-score (%) mIoU (%)

FCN-32s 59.52 41.05 27.96

FCN-16s 64.92 43.04 36.33

FCN-8s 72.66 47.00 46.21

SegNet 69.72 44.34 43.15

U-Net 83.21 49.78 62.24

ResUNet 83.57 49.74 62.92

U-Net++ 83.65 49.80 63.35

ResUNet++ 82.81 49.74 61.21

5.1.2 Segmentation visualisation

To further investigate the effectiveness of the models, Figures 9 and 10 visualise the floe instance segmentation results on local-

scale airborne and global-scale satellite images by U-net, ResUNet, U-net++, and ResUNet++ respectively for comparison.220

From these figures, we find that, U-Net is more sensitive to the rapid change in image brightness between neighbouring

pixels and detects more noise than others. Although the noise detected by U-Net may help for reducing under-segmentation, it

increases the risk of over-segmentation which is difficult to alleviate with post-processing, as seen in Fig. 10(c). On the other

hand, ResUNet and ResUNet++ produce less over-segmentation, at the expensive of under-segmentation which results in floes

that may not always be effectively detached.225

5.1.3 Inference time

Table 4 lists the average inference times of different DL models on our test set when using Intel(R) Core(TM) i7-4600U CPU

@ 2.10GHz, 16 GB RAM, Integrated Graphics Card. It typically needs more inference time as model complexity increases.

FCN-8s and FCN-16s took the least inference time, while ResUNet, U-Net++ and ResUNet++ needed similar inference time

that were only 0.4-2 seconds more than other models. The differences in inference time among different DL models were less230

than an order of magnitude, and could be negligible considering the accuracy differences of the models.

As a compromise, we conclude that the U-Net++ is the most efficient among the other SoA models and is chosen as the DL

model for floe instance segmentation.
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(a) An airborne MIZ image sample. (b) Ground truth.

(c) U-Net. (d) U-Net & post-processing. (e) ResUNet. (f) ResUNet & post-processing.

(g) U-Net++. (h) U-Net++ & post-processing. (i) ResUNet++. (j) ResUNet++ & post-processing.

Figure 9. Visualisation of MIZ image segmentation results by different models. (a) An airborne MIZ image sample; (b) Ground truth,

produced by the GVF snake-based method with manual correction; (c) Segmentation by U-Net; (d) Post-processing of (c); (e) Segmentation

by ResUNet; (f) Post-processing of (e); (g) Segmentation by U-Net++; (h) Post-processing of (g); (i) Segmentation by ResUNet++; (j) Post-

processing of (i).
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(a) S2-2 image.

(b) U-Net. (c) U-Net & post-processing.

(d) ResUNet. (e) ResUNet & post-processing.

Figure 10. Visualisation of S2-2 image segmentation results by different models Part 1. (a) Segmentation by U-Net; (b) Post-processing of

(a); (c) Segmentation by ResUNet; (d) Post-processing of (c).
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(e) U-Net++. (f) U-Net++ & post-processing.

(g) ResUNet++. (h) ResUNet++ & post-processing.

Figure 10. Visualisation of S2-2 image segmentation results by different models Part 2. (e) Segmentation by U-Net++; (f) Post-processing

of (e); (g) Segmentation by ResUNet++; (h) Post-processing of (g).

5.2 GVF-snake based method versus U-Net++

5.2.1 Segmentation235

Fig. 11 shows an example of floe segmentation on a 256×256 pixel airborne image with about 177 floes processed by the GVF

snake-based method and the U-Net++ model-based approach. In this example, the GVF snake-based method over-segmented

9 ice floes and under-segmented 4 floes, while the U-Net++ model under-segmented 45 floes. The U-Net++ model is less

sensitive to the weak edges, and also noise, than the GVF snake-based method, and it is more likely to under-segment ice floes

compared with the GVF snake-based method. However, the slight under-segmentation caused by the U-Net++ model can be240

significantly alleviated by our post-processing method, e.g., leaving only 6 under-segmented floes as seen in Fig. 11(d), while

the over-segmentation made by the GVF snake-based method unfortunately cannot be recovered.
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Table 4. Inference time by using CPU.

Methods Without post-processing With post-processing

FCN-32s 0.335 s 0.389 s

FCN-16s 0.177 s 0.316 s

FCN-8s 0.124 s 0.500 s

SegNet 0.957 s 1.359 s

U-Net 1.220 s 1.818 s

ResUNet 1.678 s 2.330 s

U-Net++ 1.674 s 2.328 s

ResUNet++ 1.682 s 2.346 s

Furthermore, due to the nature of the GVF force field, the GVF snake-based method may have difficulty in accurately

segmenting both large and small floes when the floes in an image vary greatly in size/shape. Taking Fig. 12(b) as an example,

the GVF snake-based method worked well in segmenting most small ice floes, but it failed in segmenting the largest ice floe245

in the image, dividing the floe into several pieces. This shortcoming of the GVF snake-based method limits its applications to

images other than MIZ images, i.e., the images with floes that are of great diversity in size or shape. As shown in Fig. 13, large

floes in S2-2 image were severely over-segmented the GVF snake-based method.

Although the U-Net++ model was trained on the pseudo ground truth “annotated” on local-scale MIZ images by the GVF

snake-based method, it suffers less from such floe size/shape issues, as seen in Fig. 12(c) in which both large and small ice floes250

were well segmented by the U-Net++ model. It can also be extended to process HRO satellite imagery data at global scales as

seen in Fig. 10(f). The the U-Net++ model-based approach is thus more robust than the GVF snake-based method.

(a) An airborne MIZ image sam-

ple.

(b) GVF snake-based segmenta-

tion.

(c) U-Net++. (d) U-Net++ & post-processing

Figure 11. Comparison between the GVF snake-based method and U-Net++ on an airborne MIZ image. (a) An airborne MIZ image sample;

(b) Segmentation by the GVF snake-based method; (c) Preliminary segmentation by U-net++; (d) Final segmentation after post-processing

to (c). Blue rectangle – over-segmentation region; green rectangle – under-segmentation region.
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(a) A small subset of S2-4 image. (b) GVF snake-based segmentation. (c) U-Net++.

Figure 12. Comparison between the GVF snake-based method and U-Net++ on an image containing floes that vary greatly in size and shape.

(a) A very small subset of S2-4 image where floes are of various sizes and shapes; (b) Over-segmentation by the GVF snake-based method;

(c) Preliminary segmentation by U-Net++.

Figure 13. Poor segmentation result of S2-2 image produced by the GVF snake-based method.

5.2.2 Execution time

The GVF snake-based is a serial approach that detects ice floes one-by-one, and it will take a long time to process an image

with a large amount of ice floes; whereas the U-Net++ model segments individual floes in a parallel manner, meaning that it255

will use much less execution time. The difference in execution time between the GVF snake-based method and the U-Net++

model-based approach will increase with larger images or the number of floes presented in the image. For example, with the

CPU with the configurations illustrated in Section 5.1.3, the GVF snake-based method required around 308.263 seconds to find

all the individual ice floes for Figure 11(a), and 60,292.4 seconds to generate a poor floe segmentation from the S2-2 image. In

contrast, the U-Net++ model-based approach took only about 4.234 seconds and 291.050 seconds to complete the segmentation260
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on these two images with acceptable floe identification results. Table 5 lists the execution times of the GVF snake-based method

and the U-Net++ model-based approach on S2 images. It is obvious that the U-Net++ model-based approach is two to three

orders of magnitude faster than the GVF snake-based method and is more computationally efficient.

Table 5. Execution time by using CPU.

S2-1 S2-2 S2-3 S2-4

GVF snake-based 121,490 s 60,292.4 s 116,919 s 139,258 s

U-Net++ model-based 485.52 s 291.04 s 540.93 s 350.23 s

6 Case study: floe size distribution

Our approach has been applied to the airborne MIZ images to segment individual ice floes at local scales, and then extended to265

process HRO satellite imagery data at global scales, as shown in Fig. 14(b), which exemplifies the detailed floe segmentation

result on S2-3 image. With the floe segmentation, it becomes easier to determine SIC and floe characteristics from the image.

Following the existing studies (Rothrock and Thorndike, 1984; Lu et al., 2008), we use the mean caliper diameter (MCD)

as the measure of floe size. The MCD of an ice floe is the average over all angles of the distance between two parallel lines, or

calipers, that are set against the floe’s side walls. It can be simply calculated by (Toyota et al., 2011):270

di = 1.087

√
4Ai

π
(5)

where Ai is the area of floe i. Many studies have shown that the FSD revealed from aerial or satellite images is basically scale

invariant, and the cumulative floe number distribution (CFND), Nc(d), which is the number of floes per unit area with MCD

no less than d, can be represented by a power law function, that is:

Nc(d) =
N(> d)
Ntotal

∝ d−α (6)275

where Ntotal is the total number of ice floes, and α is the power law exponent used to characterise FSD (Rothrock and

Thorndike, 1984; Mellor, 1986; Holt and Martin, 2001; Toyota and Enomoto, 2002; Steer et al., 2008; Lu et al., 2008; Toyota

et al., 2011; Perovich and Jones, 2014). In this case study, we follow these studies and use power law exponents that fit the

CFND curve to characterise FSD. Fig. 15 shows the FSD determination result based on S2-3 image segmentation, where α,

the slope of the power law curve in logarithmic space, was estimated to be 1.52 and 2.04 for floe size smaller and larger than280

1000 m, respectively. More FSD characterisation results for local-scale airborne MIZ images and global-scale S2 images can

be found in Figs. 16 and 17, respectively.
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(a) S2-3 image. (b) S2-3 image segmentation. SIC = 65.7758%.

Figure 14. S2-3 image segmentation result. (a) S2-3 image; (b) Floe segmentation of S2-3 image by our approach

Figure 15. CFND determined from S2-3 image.
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(a) MIZ-1 image. (b) MIZ-2 image.

(c) MIZ-1 image segmentation. SIC = 63.6546%. (d) MIZ-2 image segmentation. SIC = 85.5286%.

(e) CFND of MIZ-1 image. (f) CFND of MIZ-2 image.

Figure 16. Determining and characterising FSD from local-scale airborne MIZ images Part 1. (a) Airborne MIZ image MIZ-1 (b) Airborne

MIZ image MIZ-2; (c) Floe segmentation of MIZ-1 image; (d) Floe segmentation of MIZ-2 image; (e) FSD of MIZ-1 image; (f) FSD of

MIZ-2 image.
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(g) MIZ-3 image. (h) MIZ-4 image.

(i) MIZ-3 image segmentation. SIC = 84.1209%. (j) MIZ-4 image segmentation.SIC = 73.7770%.

(k) CFND of MIZ-3 image. (l) CFND of MIZ-4 image.

Figure 16. Determining and characterising FSD from local-scale airborne MIZ images Part 2. (g) Airborne MIZ image MIZ-3 (h) Airborne

MIZ image MIZ-4; (i) Floe segmentation of MIZ-3 image; (j) Floe segmentation of MIZ-4 image; (k) FSD of MIZ-3 image; (l) FSD of

MIZ-4 image.
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(a) S2-1 image. (b) S2-2 image. (c) S2-4 image.

(d) S2-1 image segmentation. SIC =

86.6861%,

(e) S2-2 image segmentation. SIC =

65.7758%,

(f) S2-4 image segmentation. SIC =

51.5449%,

(g) CFND of S2-1 image. (h) CFND of S2-2 image. (i) CFND of S2-4 image.

Figure 17. Determining and characterising FSD from global-scale S2 images. (a) S2-1 image (b) S2-2 image; (c) S2-3 image; (d) Floe

segmentation of S2-1 image; (e) Floe segmentation of S2-2 image; (f) Floe segmentation of S2-4 image; (g) FSD of S2-1 image; (h) FSD of

S2-2 image; (i) FSD of S2-4 image.

23

https://doi.org/10.5194/egusphere-2023-295
Preprint. Discussion started: 3 March 2023
c© Author(s) 2023. CC BY 4.0 License.



7 Conclusions

We have achieved automatic labelling of dataset for training a DL model for ice floe instance segmentation. Our approach

has been applied to both airborne and satellite sea ice images to determine FSDs from local to global scales and from low to285

high SIC. Our experiments show that our approach yields superior results in extracting individual ice floes and is proven to be

time-efficient and effective.

Our approach can be used to analyse ice images for determining FSDs and other floe characteristics for use in climate,

meteorology, environment and marine operations, etc. Moreover, it can also be utilised as a “higher version” of “annotation

tool” and produce more “ground truth” from a wide variety of ice image data sources to further train more robust DL models290

for obtaining more accurate ice parameters from images.
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